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A mechanical system with after-effect is considered, on the assumption that its state at a time ¢ depends
not only on its phase coordinates at the time ¢ and on the time itself, but also on the phase coordinates
at all previous times from the initial time ¢, on. Lyapunov’s first method is used to investigate the
stability of motion of such a system. A general solution is constructed for the equations of motion in
the neighbourhood of the asymptotically stable trivial solution of the linearized equations, and
asymptotic (exponential) stability is proved for the full equations. To demonstrate the application of
the method to systems with distributed parameters, the stability of equilibrium of a visco-elastic rod
under torsion is considered.

THE conDITIONS outlined above are satisfied by systems described by Volterra integro-
differential equations [1], which may contain non-linear functionals. Fréchet showed [2] that in
the analytic case such functionals can be represented by series of multiple integrals. In practical
applications one often considers only segments of these series. Equations of a similar kind find
application, in particular, in models of visco-elasticity [3-5] and aeroelasticity [6-8].

1. We shall investigate the stability of the motion represented by the trivial solution of the
equation

t
Ef‘t. = A(W)x + | K(t,5)x(s)ds + F(x,u,r), X€R", u€R" (11)
«

fo

where the continuous n x n matrices A (f) and K(z, s) are defined for teI={teR: t=1} and (¢,
s)elJ;={(t, s)eR®: 1, <5<t <+o}, respectively, the vector-valued function F(x, u,t) is analytic
in the neighbourhood of the point x=0, »=0 and does not contain linear and free terms. The
coefficients of the expansion F(x, u,r) in powers of x=col(x,,..., x,), u=col (i, ..., u,) are
continuous and bounded for tel; i, are analytic functionals represented by absolutely
convergent Volterra-Fréchet series

w =3 3 ;’...}K,-"(")(t,s‘,....s,,)xj‘(sl)...xjk(s,,)dsl...dsk (12)

k=l j,ie=lty 1o

in which K/®(, s,, ..., s,) are continuous functions defined on the set J.={({t, s,, . ..,
S)ERM™ : t,<s;<t<+o, j=1, ..., k}. In this formula (and throughout this paper) the
superscript j(k) denotes the sequence of indices j, ..., j,. Note that in general the kernels
K(@,s), KI®G@, s, ..., s,) in (1.1), (1.2) will have singularities of the same type as the Abel
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kernels on the boundaries of their domains of definition at s=t and s;=¢ (j=1, ..., k),
respectively. To be more definite, we shall assume that the kernels K/®(t, s,, ..., s,) in (1.2)
satisfy the following limit on the set J;

expl-a,(t—5)—...— 0, (!~ 5;)]
[(t~5)...(t-5:)1° 1.3)

K/, s,....s0)l = €

where the constants C>0, 0<p<1 are independent of k and o, =0 (p=1, 2,...) for some
a>0.

Consider the Cauchy problem with initial condition x,=x(f) (x,=col(xy, ..., X,.)). Let
X(, 1)) denote a fundamental matrix of solutions of the linearized equation (1.1) such that
X, 1)=E,.

Theorem 1. Assume that the kernels in Eqs (1.1) and (1.2) satisfy condition (1.3), and
moreover

Ix@, )l < C’expl-B(r-5)), C’, P>0 —const (1.4)

and let y be such that 0 <y < min(a, B).
Then £>0 (e<Yy), 8>0 exist such that the general solution of Eqs (1.1) and (1.2) in the
neighbourhood of zero admits of series expansions

x(1) = i TSP expl-(y- )t 1)) xg) .. Xgf (1.5)

m=lm+..+m,=m

whose coefficients S (1) are continuous and bounded for tel. The series (1.5) converge
absolutely and uniformly for llx,ll<3 for some 8>0, and the trivial solution is exponentially
stable.

Remark.X(t,s) is a matrix of the difference type if A is a constant matrix and K(¢, s)= K’(¢t—s).
Condition (1.4), which means that the trivial solution of the linearized equation (1.1) is asymptotically
(exponentially) stable, is easily verified, for example, in the case when K'(f) is an exponential polynomial.

The proof of Theorem 1 is based on Lyapunov’s first method [9] and proceeds along the
lines of the proofs in [10, 11]. We will represent the functionals u, as series similar to (1.5)

h=3% T POWexpl-(y-e)t-to)lag) .. xon (1.6)

The coefficients S""(t) and P"(r) of the series (1.5) and (1.6) are determined successively,
using (1.2) and the integral equation [12]

x(t) = X(t,15) xy + j X(t,8)F(x(s),u(s),s)ds

fo

which is equivalent to Eq. (1.1) with an initial condition. Under these conditions all the
functions S™"(t), P™"(¢) are bounded when rel.

Suppose that the series v, and w; are majorants for x, and u, respectively, and that F*(x,
y)>F(x, y,t) for teI; let C* be a positive matrix such that

X.(2,5) < C’exp[-B(1-5)]

where the elements of X.(z, s) are taken modulo the corresponding elements of X (¢, s). We can
then set up majorizing equations [10]
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CA[Z\) +B )_‘, ViV, + ..+ B*1 f; u.,-‘...u,-k+...)= 1.7
Jj=1 ha=l RoeeerJgml
_ CA
~ B(l-2)
=85y, D =]y
Jj=1 0 s
= C'xy + M'F'(v,w), A=D(a-vy+€), B =D(m) 13)
M > o f (expl—(y — £) (¢ — to)] - exp[—(B ~ Y + €)1~ 1))

v = col(n,,...,u,), w = col(wy,...,w,)

in which M* is a constant positive matrix.

Equations (1.7) and (1.8) determine v; and w; as an absolutely convergent power series for
Il x, i< 8. To determine & one can proceed as in [13].

An analogue of Theorem 1 for systems with distributed parameters is the assertion stated in
Sec. 2, concerning the stability of equilibrium of a visco-elastic rod under torsion.

2. Consider a thin visco-elastic rod of length I, one end of which is clamped and the other
free, under torsion around an axis Oz where O is the left end of the rod.

We shall assume that the axis of the rod is not deformed, that the cross-sections of the rod
remain plane and that displacements of the points in a cross-section may occur only due to
rotation of the cross-section as a whole. The distribution of masses over all cross-sections
orthogonal to the rod axis is assumed to be the same.

The rod is subject to external body forces whose moment in each cross-section depends only
on the angle of torsion 6 of that section. The lateral surface is free of the action of the external
forces. The moment of the visco-elastic forces depends on 96/dz and is determined by a linear
Volterra integral operator [1]

BG(z, 96(z,5) ds

M@®,z0) = k0&D |
Z

f ky(t - 5) —*

where k, is the (constant) torsional rigidity, and the relaxation kernel k,(¢f) is continuous in
tel. The equation of motion, derivable by using the Hamilton-Ostrogradskii principle for
systems with distributed parameters [14], is

%@z ¢ 9 0(z,s)

9%0(z,
(£,0) azz - sz(t" )

d or?

G250 ds - £8) =0 1)

—kl

where I, is the moment of inertia of a rod of unit length about its axis, and f(0) is the moment
of the external forces. We shall assume that f(0) is an odd function and can be expanded in a
convergent power series in the neighbourhood of zero, so that

F(@) = il a,.8*!, a,,, = const

If, for example, the rod is in a horizontal position in the field of gravity and the distance
between the centre of mass of the cross-section and the rod axis is r, then f(0)=-mgrsin6,
where mg is the weight of a rod of unit length.

We shall investigate the stability of the equilibrium position corresponding to the trivial
solution of Eq. (2.1), relative to perturbations at time ¢ =1, of the angle (0, x,¢) and its velocity,
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subject to the boundary conditions
8(0,) = 96(z,1)/azl,_, =0 (22)

To that end, we put 8 =pU (u=const<1) and construct the general solution of Eq. (2.1) in
the neighbourhood of zero as a series

U = 3 3 p*2sin(@) T 00 (23)

n=] k=]

where, by virtue of our boundary conditions, we have put o, =n(2k—1)/(2/). Substituting
the series (2.3) into (2.1), we see that, by the properties of Eq. (2.1), a solution may be
obtained—at least, formally—in the required form. When that is done the functions 7,*"(r)
(k, n=1,2,...) will be solutions of the equations

dZT(Zn—l) t
L —t— @, (o} - a) TV +

i
+ a2 [ k(-)T* D()ds = SEV () (24)
‘o

where S$()=0 and S&"I(t) (n=2, 3,...) are known continuous functions, if all the func-
tions S&"(¢) are known for m<n and k=1,2,....

Let us assume that the initial values 6(z, ¢,) =p@(z) and 96(z, 1)/ot|_, =py(z) are sufficiently
smooth functions, expanded in Fourier series over the interval [0, /] with respect to the system
of functions sin(o, z). Let

Nl(\.)

i
b, = %— ¢ (x)sin (o, x)dx, Ci (j)w(x) sin(a,.x)dx

© ey =

be the corresponding Fourier coefficients. Let us consider solutions of Eqs (2.4) for n=1 with
initial conditions T"(t,) = b,, dT{’(1)/dt_, = c,. The solution of these equations for k=1,2, ...
may be written in the form

V@) = xP @) b + xP ey, dTP @/ dt = XP0)b, + x52 (D e,

where the fundamental matrix (x{"()) is such that (x°(5,)) = E,.

Taking. the dissipative properties of visco-elastic materials into account, we will make the
following assumption as to the behaviour of the functions x{’(f): for all k=1,2,.. ., constants
M >0, A,>0 exist independent of %, such that for tel

xP 0l 1x® ], 1x8 @) < Mexp[-ho(t 1)) (2.5)
We shall also assume that the following conditions hold for the integral kernel K,(¢)

&, (O] < x exp(-Byt), By -%,/k>0; ¥x;>0, B, >0-const 2.6)

We will give a simple example to show how the validity of conditions (2.5) may be related to the
parameters of Eq. (24) for n=1. Let Eq. (2.4) be
42 ()

42 +02 @D + | k(1= T (s)ds) = 0
t

fo

ky (1) =xexp(-B1)
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X, p - const

It follows from an analysis of the characteristic equation [12] that if B>0, x<0, B+« >0, its roots will
have negative real parts for all real o, and the solution of the equation will be exponentially stabie. One
can then find constants M, A, >0 such that conditions (2.5) hold for all k=1, 2, . ... In that situation
| x®()I=C, /o, and | xP()I<a,/C,, where C, >0, C, >0 are constants independent of k.

Theorem 2. If conditions (2.5) and (2.6) hold, the equilibrium position of the visco-elastic
rod corresponding to the trivial solution of Eq. (2.1) with boundary conditions (2.2) is
asymptotically stable in Lyapunov’s sense with respect to perturbations of the initial conditions
such that the functions ¢(z), y(z) € C* and ¢"’(z), ¥"”’(z) are of bounded variation. The angle
of torsion in the perturbed motion is such that 6(z, 1) >0 exponentially as ¢ — +e for each
z€[0, 1], and the general solution of the problem is defined by a series (2.3) in which the
function T2"'(f), which tends exponentially to zero, depends on the constant Fourier
coefficients b, and c,, of the functions ¢(z) and y(z) in [0, /] relative to the system of functions
sin(a,z). The series (2.3) is a solution of Eq. (2.1) and converges absolutely and uniformly for
all ze[0,1), tel and p, b, and c,, such that uX; (b 1+Ic, ) <8 for some §>0.

Remark. Let us extend each of the functions ¢(z) and y(z) to the interval [/,2/] in such a way that the
extended functions are even with respect to the straight line z=1/, and then extend it further to the
interval [-21, 0] so that the extension is an odd function (relative to zero). One can then define these
functions over the entire real axis as 4/-periodic functions. The restrictions imposed on ¢(z), y(z) and
their derivatives in Theorem 2, the boundary conditions and Eq. (2.1) itself imply that these periodic
functions will have everywhere continuous third derivatives of bounded variation. Hence their Fourier
coefficients satisfy the limit [15]

by = 0(;17)' o = o(k%-) @7

By (2.7), the solution of the linearized equation (2.1), expressed as a series, and the series for the first
and second derivatives of U(x, t), converge absolutely and uniformly, so the linearized equation in the
required form indeed has a solution.

Proof of Theorem 2. Suppose that all the functions T"(f), where l1<m<n and
k=1, 2, . . ., are determined from Eq. (2.4) with initial conditions T%" V() =0,
dT&™V(#)/ dt |, =0 and satisfy the inequalities

172" D(@))] = Cexpl-Ag(t-15)],  C=const>0 28)

m=12..,n-1

Suppose that T,*"™(z), as series in the parameters b, ¢, (g, r=1, 2, .. .) are absolutely con-
vergent. To determine TZ"(f) we have Eq. (2.4), in which S&"(r) is, for all fixed k, n, a
series in a,,+1 (i=1,2,..., n-1)and T>V(t) (s=1,2,..., n-1; p=1,2,...) with rational
coefficients, The series S (¢) in the parameters b, and c, is absolutely convergent, and by
(2.8) and the properties of f(8), we have the limit

I S£ZH_3)(') I < K(Zn—3) exp[-—3Xo (t- ty )] (29)

where K@ >0 is a constant that depends on K®* for m < n. The solution of Eq. (2.4) with
initial conditions T*"(1,)=0, dT*""(t)/dt_ =0 is given by the formula

I
T D) = | ¥ - 5) 82"V (s) ds (2.10)

L]
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from which, using (2.5) and (2.9), we obtain the limit
T D) < MK 2hg) " expl=Ag(t—1,)]
which in turn implies that the series for 7%"(¢) is absolutely convergent.

Let V denote a majorant for the series (2.3), considered as an expansion in powers of p, b,
and c,. Applying the procedure used in Sec. 1, we set up an equation for V

V =Mp+ -)’-:-’-f‘(V), p= 3 (b l+lc, D) 2.11)
0 k=1

where f*(8) is a majorant of the series for f(0)—a,.

Equation (2.11) defines V as a series in the parameter p, whose radius of convergence p, is
finite. For y, b, and c, such that p=<p,, the series (2.3) is absolutely and uniformly convergent
for z€[0, I], t € I. One can also show by constructing majorants that the series for 9°6(z, 1)/9z>
and 0’6(z, 1)/9¢* are absolutely and uniformly convergent.

The relation

drk(Zn—l) (t)

t
" = [ XD@1-5) 82" V(s)ds, n>1

o
which is analogous to (2.10), implies

27(2n-1)
Tho O - 500 + J x5 2 5P 5) ds
)

on whose basis one constructs a majorant series for 8°0(z, )/t similar to the series on the
right of (2.11), which is absolutely convergent provided that (2.7) and (2.5) hold.

Equation (2.1), with the solution determined for 0(z, r) as Fourier series substituted into it,
may be treated as a Volterra integral equation for the unknown 9°6(z, r)/dt>. By virtue of the
above, the right-hand side ®(z, r) of this integral equation, expressed in terms of f(0) and
9%0(z, t)/or?, will be finite. The solution of the integral equation, constructed using the
resolvent T'(¢, s) [3, 16} for the kernel k,(t—s), is

3%0(z,1)

=T = ®Gn + [ T () ®(z,5) ds 212)

fo
I A ()
k  or k,

d(z,1) =

If (2.6) is true, the right-hand side of (2.12) is a bounded function and 9°6(z, )/dz* is an
absolutely and uniformly convergent series for z€[0, /], te 1.

Remark. The estimate (2.7) will also hold under slightly weaker assumptions concerning the properties
of the functions ¢(z) and y( z) than those of Theorem 2. It is sufficient to require that ¢’”(z), ¥”(z) be of
bounded variation or absolutely continuous in [0, /].

If k,(¢) is an exponential polynomial [12], it can be shown that, for the majorizing series for 9°6(z,
£)/9f and 9°&(z, t)/3¢ to converge, the function y(z) must be such that ¢, = O(1/k*). This means that
¢""(2) and ¥”(z) in the formulation of Theorem 2 must be of bounded variation or absolutely continuous
in [0, ].

Series of type (2.3), which depend on arbitrary constants b,, ¢, (p, ¢=1, 2, . . .), may be
considered for systems with distributed parameters as analogues of the series of Lyapunov’s
first method.
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Note that in order to investigate the stability of systems with after-effect or systems of processes with
either lumped or distributed parameters, one often uses the method of Lyapunov functionals or functions
[17, 21], characterizing the process by one or two metrics. A comprehensive survey of research on stability
in such systems may be found in the above-mentioned monographs, and also in [12, 22-24].

When investigating the torsion of a visco-elastic rod, a good measure of the initial perturbation (the
deviation of the functions po(z), pw(z) and their first and second derivatives) is the following series,
which is convergent under the assumptions of Theorem 2

po = T n(+n+n?)(la,l+1n, D)

n=l

Then, as follows from Theorem 2, for each fixed z €[0, /] one has exponential stability relative to the
functions 6(z, £), 3*6(z, £)/9z°3t*, k=s+p=1,2;s, p=0, s#p.

In connection with Theorem 2, it should be mentioned that a related problem—the determination of
perturbed motion for a given steady-state of a thermovisco-elastic system, represented by formal power
series in parameters characterizing the applied perturbing forces, and the derivation of the spectral
conditions of asymptotic stability relative to the perturbations—was treated in [25, 26].
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